
The AI-Workbench BABYLON

A short description

AI Research Division

Institute for Applied Information Technology

GMD

PO Box 1360

D-5205 Sankt Augustin 1

FRG

Front page with friendly permission of Addison-Wesley, Bonn and U. Carthaus, Alfter b. Bonn

THE AI-WORKBENCH BABYLON

ON THE MACINTOSH

BABYLON is a modular, configurable, hybrid environment for developing expert systems.

The following knowledge representation formalisms are provided: objects, rules with forward

and backward chaining, Prolog and constraints. BABYLON is implemented and embedded in

Allegro Common Lisp.

At Cebit'89 the book Die KI-Werkbank BABYLON - eine offene und portable

Entwicklungsumgebung für Expertensysteme, was published by Addison-Wesley. The english

version of the book : The AI Workbench BABYLON is currently (January 1992) being

published by Academic Press. Both books begin with a brief introduction to the foundations of

expert systems. Then the knowledge representation formalisms of BABYLON and their

interaction are explained. A large, commented example demonstrates how to use the formalisms

in a real application. A language extension for component descriptions and diagnosis is

presented. Next, the object-oriented implementation is explained so that a systems programmer

can adapt BABYLON to his/her special needs.

System requirements: 4MByte main storage, Allegro Common Lisp release 1.3.2 (CCL 1.3.2)

or Macintosh Allegro Common Lisp 2.0 (MCL 2.0).

2

The AI-workbench BABYLON

BABYLON is a hybrid tool system for implementing and operating expert systems. It provides

the knowledge engineer with different integrated knowledge representation formalisms and

different user interfaces.

BABYLON is configurable:

Interpreters and user interfaces are available in different versions, configurable in any

combination to obtain problem-specific tools.

BABYLON is an open tool system:

If the user develops his own knowledge representation formalisms or changes existing ones, he

can easily integrate them in BABYLON. The BABYLON architecture is open for such

extensions.

BABYLON is portable:

We modularized BABYLON in a strictly functional way, factored out the I/O-operations, and

extended the implementation language Common Lisp by our own, small, efficient and portable

object system. Thus BABYLON became an easily portable system, as is demonstrated by more

than a dozen successful portations to seven different Lisp systems.

Target group:

Version 2.2 of BABYLON is primarily designed as a system for research and development,

teaching and training.

Knowledge representation in BABYLON:

BABYLON offers the following languages for knowledge representation:

• Prolog

• objects

• production rules

• constraints

3

The BABYLON paradigm:

BABYLON provides an independent specialist for each formalism, i.e. in metaphoric terms:

- a logician accustomed to proceed analytically, to decompose goals into subgoals and problems

into subproblems;

- a stockkeeper possessing information on well-known things (objects), managing this

information and thus rousing expectations. Of course, the stockkeeper can extend the stock,

update old information etc.;

- a pragmatist living fully in present-day reality, being concentrated on the concrete and

recommending actions to be performed in accordance with the specific situation;

- a supervisor controlling the performance of actions, asking for future consequences and

tracing back the reasons for current situations.

The interaction of the specialists follows the principle of distributed problem solving. There is

an other specialist for coordination:

- the manager receiving tasks to be accomplished, selecting the suitable specialist, delegating the

task and securing the delivery of the result to the correct place.

manager

logician supervisor

stockkeeper pragmatist

organizational structure of BABYLON

The very point of this division of labor is that the specialists do not know each other. This

makes it very easy to omit specialist groups or to compose new ones.

4

The architectural concept

The BABYLON architecture is a processing model for the organizational structure described

above. The specialists are software modules responsible for the interpretation of different

formalisms: as a stockkeeper, the frame interpreter interprets the object constructs (frames), the

rule interpreter interprets the production rules as a pragmatist, the Prolog interpreter interprets

the Horn clauses as a logician and the constraint interpreter the constraints as a supervisor. The

metainterpreter coordinates the four language interpreters and manages the references made to

expressions of other formalisms within a formalism.

Horn
clauses

frames produktions
rules

knowledge base

meta-
interpreter

Prolog
interpreter

frame
interpreter

BABYLON architecture

constraints

produktion
rule

interpreter

constraint
interpreter

The arrows show the communication paths (data and control flow). The arrow connecting the

metainterpreter with the knowledge base is also to be regarded as a data and control flow channel. It is

used for transmitting the contents of the knowledge base parts to the responsible interpreters. Such a part

which is not represented in the figure is the so-called instruction part where the control statements for the

metainterpreteritself are filed.

The integration is achieved by the fact that, for example, the left-hand side of production rules

may consist of logical expressions or references to objects. The interaction is realized as

5

follows. If the rule interpreter wants to apply such a rule, it activates the metainterpreter by

sending it a condition from the left-hand side of the rule, and requests the interpretation of the

condition. The metainterpreter then identifies the type of the condition. If it is a reference to an

object state, it forwards it to the frame interpreter which can find out whether the object

concerned is in the respective state or not. Via the metainterpreter, the reply is then returned to

the rule interpreter thus enabling it to continue its work. If the first reply is positive and if the

left-hand side is a conjunction of conditions, the remaining conditions are handled in the same

way.

rule interpreter

if object reference and logical expression then object modification

metainterpreter

frame interpreter

metainterpreter

Prolog interpreter

metainterpreter

constraint
interpreter

frame
interpreter

However, if a condition on the left-hand side is a predicate expression, the metainterpreter

activates the Prolog interpreter. It checks the expression by searching for Horn clauses allowing

its proof. The reply of the Prolog interpreter is then returned by the metainterpreter to the rule

interpreter as described above. If, eventually, the evaluation of the left-hand side of the rule

terminates positively, the rule interpreter begins with the evaluation of the actions of the rule in

question. For this purpose, it proceeds analogously to the evaluation of the conditions, i.e. the

actions are forwarded to the metainterpreter. Actions may, for example, modify object states.

Before effecting the modification, the metainterpreter activates the constraint interpreter. The

latter checks whether the modification of the objects is consistent with possibly available

constraints. If there are no conflicts from the viewpoint of the constraints, the frame interpreter

is requested via the metainterpreter to modify the state of the object in question in accordance

with the action.

6

Architectural characteristics:

The basic idea, common to all hybrid systems is that the various integrated formalisms are not

provided alternatively, but in a complementary way. The architectural concept distinguishes

between several processing levels. At the basic level, which is split into several modules

according to the principle of distributing competence and tasks, problem solving processes

operate that are coordinated at a higher level (the metalevel). This horizontal and vertical

distribution of functionality provides various advantages of openness from the point of view of

system technology: openness in depth since the components of the lower level can in principle

be put onto any software or hardware basis; openness in breadth since the various basic

components can be developed separately and can thus be exchanged or added at any time;

openness in height since additional components can be realized by bootstrapping.

BABYLON expert systems:

A BABYLON expert system is divided into a configuration part and a knowledge base.

The configuration part determines the configuration of the interpreters for the knowledge base.

It consists of the metainterpreter, interpreters for different knowledge representation formalisms

and the user interface. The knowledge base itself consists of different parts. They contain

programs and data for the various interpreters of the configuration. For example, the rule part

contains rule packages for the rule interpreter or the instruction part contains instructions for the

metainterpreter.

7

knowledge base

expert system

configuration part

defines

interpreter-
specific
parts

configuration

knowledge base interpreter

...

BABYLON languages:

The following knowledge representation formalisms are available: objects, rules, Prolog and

constraints. Each of them occupies a specific part in the BABYLON knowledge base. The

global flow of control is defined separately in the instruction part. All formalisms allow to

access the implementation language Common Lisp.

knowledge base

object part

rule part

Prolog part

constraint part

instruction part

8

Objects:

The object part is often the basis for the other parts of the knowledge base: the rule, logic and

constraint parts. Nevertheless, the frame interpreter is not superior to the rule, Prolog, or

constraint interpreter. The object-oriented form of knowledge representation in BABYLON

adopts the following main characteristics of the flavor system, a widespread

object-oriented extension of various Lisp dialects. Objects are instances or occurrences of object

types which are called frames in BABYLON (and flavors in the flavor system). A frame defines

the attributes (or slots) of its instances (in the flavor system, these are the instance variables)

and determines which behaviors are invoked by which messages to its instances. Such a

behavior describes the actions which are performed when an instance receives a corresponding

message (in the flavor system, these are the (primary) methods).

Frames can be organized in an inheritance graph and then contain as components frames whose

characteristics they inherit. The direct predecessors are referred to as superframes or superior

frames. Since a frame may possess several superframes, we speak of multiple inheritance. The

algorithm according to which attributes and behaviors are inherited which occur in more than

one superframe corresponds to that of the flavor system, i.e. mainly depth first and from left to

right. Inherited behaviors can be modified by :after or :before encapsulations. Other forms of

method combinations of the flavor system are not supported.

In the following aspects, the frame concept of BABYLON goes beyond the flavor concept:

Attributes can be connected with metainformation which can be evaluated automatically if

required. This metainformation is stored in annotations. The user is able to define his/her own

annotations in addition to those provided by the system. Furthermore, BABYLON admits

active values as attribute values. They can be used as demons monitoring attribute values.

Rules:

Knowledge representation by means of production rules is one of the oldest formalisms used in

the construction of expert systems. In the definition of the rule-oriented formalism in

BABYLON, maximum power was not of primary importance, but rather a useful delimitation

of characteristics with respect to other formalisms. In the rule formalism, the rules can be

divided into packages which can be evaluated separately. The evaluation strategy of a rule-

package is not defined in the package, but it is defined by the caller of the package. Forward

and backward chaining with different control strategies are supported. Rules contain references

both to constructs of other formalisms and to constructs realized in the underlying programming

9

language. References to such constructs are forwarded to the metainterpreter for evaluation.

The rule interpreter itself has no language of its own to represent facts and operands.

Prolog:

BABYLON provides a specific Prolog version for logic-oriented knowledge representation.

Prolog is a programming language representing knowledge in form of Horn clauses. A Horn

clause consists of an atomic formula, the conclusion, and an arbitrary number of further

formulas, the premises. It denotes an implication from the premises to the conclusion. The

Horn clauses are processed according to a fixed strategy (depth-first search with backward

chaining) to prove hypotheses, i.e. arbitrary atomic formulas. The reference manual for

standard Prolog is (Clocksin & Mellish 1984).

The special feature of BABYLON Prolog is its integration into the overall system. Prolog

hypotheses can be used in other formalisms as conditions or for data inquiry. Conversely,

BABYLON Prolog can use constructs from other formalisms, such as Lisp expressions or

attribute and behavior references as premises. In particular, there are metapredicates defined on

the constructs of other formalisms allowing to draw metaconclusions. As a side-effect, the

number of system predicates can be reduced if compared with other Prolog implementations.

For modularization, the clauses in BABYLON Prolog can be combined to clause sets. The

Prolog part of the knowledge base forms the first clause set, further clause sets can be located

in separate files. The current clause sets are used for proving hypotheses.

BABYLON Prolog uses a Lisp-oriented syntax instead of the standard Prolog syntax.

Constraints:

Constraints can be used to model marginal conditions or constraints, such as physical laws or

logical contexts. In metaphoric terms, we can regard the constraints as nodes of a network

which interconnect variables thus establishing a connection between the variables. The

following figure shows such a constraint connecting three variables A, B and C such that

A+B is equal to C.

+

B

A

C

10

The following table demonstrates the various effects of this constraint:

start values values filtered by the constraint

A B C A B C

 3 4 - 3 4 7

 4, 5 3, 4 - 4, 5 3, 4 7, 8, 9

 3, 4, 6 - 4, 5 3, 4, 6 -2,-1,0,1,2 4, 5

 - 3, 4 2, 3 -2,-1, 0 3, 4 2, 3

 1, 2 3, 4 6, 7 2 4 6

 3, 4 5, 6 1, 2 ø ø ø

Formally, a constraint consists of a set of variables and a relation on these variables. Using

common variables between different constraints, we can compose constraint networks. If we

predefine values or sets of possible values for a subset of the variables, a constraint network

can be used as follows:

- to compute values for unknown variables;

- to check the consistency of values and

- to filter sets of possible values, i.e. to eliminate inconsistent values.

The constraint interpreter of BABYLON is based on CONSAT, a domain-independent

constraint system. The constraint language combines the simplicity of extensional constraint

descriptions with the power of intensional descriptions. Hierarchies of constraints and

(recursive) constraint networks can be constructed. Various control strategies are provided:

apart from local propagation, there is a method combining this strategy with backtracking.

Lisp:

Common Lisp is the implementation language of BABYLON, but it can also be used for

knowledge representation. In a knowledge base, Lisp can be used between all BABYLON

expressions. Many BABYLON expressions admit or require Lisp at specific syntactic

positions. The reference manual for Common Lisp is (Steele 1984).

11

To keep the knowledge bases portable, one should confine oneself to a subset

of Common Lisp. There is an abstract interface to the flavor system and a portable inhouse

development of flavors.

Instructions:

Instructions define the global flow of control through the expert system. They are Lisp

expressions which typically handle rule packages according to a specific strategy, make Prolog

inquiries, activate behaviors or functions directly programmed in Lisp (e.g. input/output).

Integration of formalisms:

The following table shows the integration of the knowledge representation languages into

BABYLON. A formalism X is usable in another formalism Y as described in column X and

line Y:

Lisp

as attribute values,

in behaviors

as conditions,
as actions

Lisp-expression
as premisses

Lisp-expressions as

value spezifications,
activation conditions,
in patterns

Lisp

objects

rules

Prolog

constraints

objects

via messages

to objects, and
functions for objects

attribute and behavior

references as conditions
and action

attribute and behavior

references,
metapredicates

object references

value specifications,
activation conditions,
in patterns

rules

evaluation of
rule packages

not possible

metapredicates

not possible

12

Lisp

objects

rules

Prolog

constraints

Prolog

proving
hypotheses

not possible

in conditions

and actions

Prolog-expressions as
activation conditions

constraints

defining and
satisfying
constraints

via mesages

satisfied-p expressions

as premisses

satisfied-p expressions
as premisses
or in candidate

BABYLON configurations:

Since all parts of a BABYLON knowledge base are optional, the knowledge base interpreter

needs not always comprise all basic interpreters (specialists). Therefore, the interpreters for

BABYLON knowledge bases are configurable. In addition to the metainterpreter which is

absolutely necessary as a manager in each configuration, a configuration may consist of

interpreters for Lisp, objects, rules, Prolog or constraints. Custom interpreters are also

possible. Another component is the user interface. The last four interpreters and the user

interface are available in three versions of different comfort.

13

basic-interface-mixin

mini-interface-mixin one one one

comprises different versions

 basic-frame-
mixin

mini-frame-
mixin

normal-frame-
mixin

 basic-rule-
mixin

mini-rule-
mixin

normal-rule-
mixin

 basic-prolog-
mixin

mini-prolog-
mixin

normal-prolog-
mixin

 basic-constraint-
mixin

mini-constraint-
mixin

normal-
constraint-
mixin

normal-interface-mixin

lisp-
mixin

one

metainterpreter

User interface versions:

• Basic user interface with a TTY-oriented interface.

• Mini user interface extended by a command loop and command menus.

• Normal user interface with more comfortable command menus. This is the interface to be used

by the knowledge engineer normally. Though this user interface is within the standard delivery,

its realization is machine-dependent.

Frame interpreter versions:

• Basic version with frames, behaviors, instances, inheritance and annotations of attributes.

• Mini version with additional possible values specification.

14

• Normal version with additional active values.

Rule interpreter versions:

• Basic version with forward and backward evaluation, various junctors and action types.

• Mini version with an additional protocol component.

• Normal version with an additional explanation component .

Prolog interpreter versions:

•␣Basic version with clauses, clause sets and system predicates.

• Mini version with an additional protocol component.

• Normal version with an additional explanation component.

Constraint interpreter versions:

• Basic version with constraints, constraint networks and various evaluation algorithms.

• Mini version with an additional protocol component.

• Normal version with an additional connection to the frame formalism.

System size:

frame interpreter: 123 KByte

rule interpreter: 128 KByte

Prolog interpreter: 168 KByte

 constraint interpreter: 121 KByte

total core system: 650 KByte

for machine-specific user interfaces:

 Macintosh: 47KByte

 Lisp machines: 73 KByte

15

References:

Christaller, Th., Di Primio, F., Voß, A.(eds.), Die KI-Werkbank BABYLON, Addison-

Wesley, Bonn 1989

Christaller, Th., Di Primio, F., Voß, A.(eds.), The AI Workbench BABYLON, Academic

Press 1992 (in press).

Clocksin, W.F.; Mellish, C.S.: Programming in Prolog. 2. edition, Berlin: Springer, 1984.

Fidelak, M.; Lischka, C.; Voß, H.: Repräsentation der Dynamik technisch-physikalischer

Systeme. GMD-TEX-I-Bericht, GMD, Sankt Augustin, December 1986.

Fidelak, M.; Höffgen, K.U.; Voß, H.: Spezifikation der K3-Mechanismen. GMD-TEX-I-

Bericht, GMD, Sankt Augustin, April 1987.

Früchtenicht, H.W.; Güsgen, H.W.; Hrycej, T.; Mörler, G.; Struss, P. (eds.): Technische

Expertensysteme: Wissensrepräsentation und Schlußfolgerungsverfahren. Oldenbourg,

München, 1988.

Gaines, B.R., Linster, M.: Integrating a Knowledge Acquisition Tool, an Expert System Shell

and a Hypermedia System. International Journal of Expert Systems 3 (2), 1990, 105 – 129.

Güsgen, H.W.: Constraints, eine Wissensrepräsentationsform -- Überblick. Arbeitspapiere der

GMD 173, Sankt Augustin, 1985.

Güsgen, H.W.; Junker, U.; Voß, A.: Constraints in a Hybrid Knowledge Representation

System. In: Proceedings of the IJCAI-87, Milan, Italy, 1987, 30-33.

Güsgen, H.W.: CONSAT: Foundations of a System for Constraint Satisfaction. In: H.W.

Früchtenicht et al. (eds.), Technische Expertensysteme: Wissensrepräsentation und Schluß-

folgerungsverfahren, 415-440.

Müller, B.S.: Lehrmaterialien BABYLON: Die Beispielswissensbasen zur Pilzbestimmung.

Arbeitspapiere der GMD Nr. 221, GMD, Sankt Augustin, September 1986.

di Primio, F.; Wittur,K.: BABYLON: A meta-interpretation-model for handling mixed

knowledge representations. In: Proceedings of the seventh International Workshop on Expert

Systems and their Applications, Avignon, 1987, 821-833.

di Primio, F.: Micro Common Flavors, Arbeitspapiere der GMD Nr. 295, GMD, Sankt

Augustin, February 1988.

16

Steele, G.L., jr.: COMMON LISP: The Language, Digital Press, 1984.

